MAKALAH
MASALAH
DISTRIBUSI FREKUENSI
Dosen
Pengampu: Drs. Rizalman,M.Pd
DISUSUN OLEH:
KELOMPOK 4
Anton
Siti Ummi Rosyidah
JURUSAN FISIKA FAKULTAS TARBIYAH
IAIN SULTAN THAHA SAIFUDDIN JAMBI
2012
KATA
PENGANTAR
Puji syukur penulis ucapkan
kehadirat Allah Swt yang telah melimpahkan rahmat dan karunian-Nya kepada
penulis sehingga makalah ini dapat diselesaikan dengan baik. Didalam makalah
ini penulis membahas tentang Masalah Distribusi Frekuensi, Cara Membuat
Tabel Distribusi Frekuensi Grafik Poligon dan Grafik Histogram.
Dalam penyusunan makalah ini
penulis menyadari bahwa masih banyak terdapat kekurangan baik dari segi isi
maupun dalam penyajian materinya. Untuk itu penulis mengharapkan kritik dan
saran yang sifstnya membangun dari pembaca demi perbaikan makalah ini.
Akhir
kata, semoga makalah ini dapat bermanfaat bagi pembaca.
Amiiin.....
Jambi,10 April 2012
Penulis
BAB
I
PENDAHULUAN
1.1
Latar
Belakang
Adalah menyajikan atau mendeskripsikan data angka yang telah berhasil
dihimpun itu secara teratir,rinkas,mudah dimengerti,hingga dengan secara jelas
dapat memberikan gambaran yang tepat mengenai ciri atau sifat yang terkandung
didalam data angka tersebut. Dengan diketahuinya ciri atau sifat yang
terkandung dalam kumpulan data angka itu berarti kumpulan data angka Setiap
kali kita melakukan kegiatan pengumpulan data statistik,maka pada umumnya
kegiatan tersebut akan menghasilkan kumpulan data angka yang keadaannya tidak
teratur,berserak dan masih merupakan bahan keterangan yang sifatnya kasar dan
mentah. Dikatakan “kasar” dan “mentah”,sebab kumpulann data dalam kondisi
seperti yang disebutkan diatas belum dapat memberikan informasi secara ringkas
dan jelas mengenai ciri ataun sifat yang dimiliki oleh sekumpulan angka
tersebut.
Tidak terlepas hubungannya dengan pernnyataan diatas,maka salah satu
tugas dari statistik sebagai ilmu
pengetehuan tadi telah “dapat berbicara” dan karenanya kita berhasil memperoleh
informasi-informasi yang berguna sejalan dengan maksud dan tujuan pengumpulan
data.
1.2
Rumusan
Masalah
1. Apa
yang dimaksud dengan Variabel dan Frekuensi?
2. Bagaimana
cara membuat tabel distribusi frekuensi grafik poligon?
3. Bagaimana
cara membuat distribusi frekuensi dalam grafik histigram?
1.3
Tujuan
Penulisan
Adapun
tujuan penulisan makalah ini secara umum adalah untuk menyelesaikan tugas dari
Bapak Drs. Rizalman,M.Pd selaku dosen mata kuliah StatistikPendidikan, namun
tujuan penulisan ini secara khusus adalah sebagai berikut:
1. Untuk
mengetahui Pengertian Variabel dan Frekuensi
2. Untuk
mengetahui cara membuat Tabel distribusi frekuensi grafik poligon
3. Untuk
mengetahui cara membuat distribusi frekuensi dalam grafik histogram.
BAB
II
PEMBAHASAN
MASALAH
DISTRIBUSI FREKUENSI
2.1 Pengertian Variabel
Kata”variabel” berasal dari bahasa inggris
variable dengan arti”ubahan”,”faktor tak tetap”,atau’gejala yamg dapat
diubah-ubah”. Dalam contoh yang telah disebutkan dimuka,nilai-nilai ujian
semester dari sejumlah 80 mahasiswa itu kita sebut variabel. Variabel pada
dasarnya bersifat kualitatif namun dilambangkan dengan angka.
Contoh
“usia” adalah gejala kulitatif,akan
tetapi gejala yang bersifat kualitatif itub dilambangkan dengan angka;
misalnya: 17tahun,25tahun,50tahun,dan sebagainya”Nilai Ujian” Pada dasarnya
adalah gejala kualitas yang dilambangkan dengan angka seperti:
5,6,7,40,70,90,dan sebagainya.
2.2 Pengertan Frekuensi
Frekuensi yang dalam bahasa inggrisnya
adalah Frequency berarti “kekerapan”,atau “jarang kerapnya”,dalam statistik
frekuensi mengandung penngertian: Angka (bilangan) yang menunjukkan berapa kali
suatu variabel ( yang dilambangkan dengan angka-angka itu) berulangdalam
deretan angka tersebut;atau berapa kalikah suatu variabel(yang dilambangkan
dengan angka itu) mu cul dalam deretan angka tersebut.
Contoh
Nilai yang berhasil dicapai oleh 10 orang
siswa SMA dalam tweshasil belajar bidang studi Ilmu Pengetahuan Alam adalah:
60 50
70 60 80
40 60 70
100 65
Jika kita amati, maka dalam deretan nilai
hasil tes tersebut,jika 60 muncul sebanyak 3kali;atau bahwa siswa yang
memperoleh nilai 60 sebanyak 3orang. Maka disini kita dapat katakan bahwa nilai
60 itu berfrekuensi 3.
Nilai
70 hanya muncul sebanyak 1 kali saja;ini berarti bawa nilai 70 itu berfrekuensi
1
Nilai
75 dicapai oleh 2 orang siswa,atau nilai 70
itu ada sebanyak 2 buah;disini kitakatakan bahwa nilai 70 berfrekuensi 2. Dan begitulah seterusnya.
2.3 Pengertian
Distribusi Frekuensi
“Distribusi” yang dalam bahasa inggris
disebut dengan distribution berarti “penyaluran”,”pembagian”,atau “pencaran”.
Jadi “distribusi frekuensi” dapat diberi “arti penyaluran
frekuensi”,”pemmbagian frekuensi” atau “pencaran frekuensi”. Dalam
statistik,”distribusi frekuensi” kurang lebih mengandung pengertian: “suatu
keadaan yang menggambarkan bagaimana frekuensi dari gejala atau variabel yang
dilambangkan dengan angka itu, telah tersalur,terbagi,atau terpencar”.
Contoh
Jika data yang berupa nilai hasil THB
dalam bidang studi IPA dari 10 orang siswa SMA kita sajikan dalam bentuk tabel,maka
pembagian atau pancaran frekuensi dan nilai hasil tes akan tampak dengan nyata:
Tabel
1.0.
Distribusi Frekuensi Nilai Hasil THB
dalam Bidang Studi IPA dari 10 Orang Siswa SMA
Nilai
(x)
|
Banyaknya
(orang)
|
100
80
75
70
60
50
50
40
|
1
1
2
1
3
1
1
1
|
Total
|
10
|
2.3
Cara Melukiskan Distribusi Frekuensi Dalam Bentuk Grafik Poligon( Poligon Frequensy)
Sebelum dikemukakan tentang cara
melukiskan distribusi frekuensi dalam bentuk grafik poligon,terlebih dulu dapat
difahami bahwa grafik poligon dapat dibedakan menjadi dua macam, yaitu; (1)
Grafik poligon data tunggal, dan (2) Grafik Poligon Data Kelompokan.
1
.Contoh Cara Melukiskan Distribusi Frekuensi Dalam Bentuk Grafik Poligon Data
Tunggal
Misalkan data yang berupa nilai hasil
ulangan haraian dalam bidang studi matematika yang diikuti oleh 40 orang murid
Madrasah Ibtidaiyah seperti tertera pada tabel:
Tabel
1.1.Distribusi Frekuensi nilai hasil
Ulangan Harian Matematika yang diikuti 40 Orang Murid Madrasah Ibtidaiyah
Nilai
(x)
|
Tanda
jari-jari /tallies
|
f
|
10
9
8
7
6
5
4
3
|
//
///
////
////
//// ////
//// //
////
///
|
2
3
5
5
10
7
5
3
|
|
Total
|
40=N
|
Data
di atas kita sajikankembali dalam bentuk grafik poligon,maka langkah yang harus
dilakukan berturut-turut adalah:
a. Membuat
sumbu horizontal (abscis),lambangnya X
b. Membuat
sumbu vertikal (ordinal),lambangnya Y
c. Menetapakan
titik nol,yaitu perpotongan X dengan Y.
d. Menempatkan
nilai hasil ulangan umum bidan studi Matematika pada abscis X,berturut-turut
dari kiri ke kanan,mulai dari nilai terendah sampai dengan nilai tertinggi.
e. Menempatkan
frekuensi pada ordinal Y.
f. Melukiskan
Grafik Poligonnya. Hasilnya dapat dilihat pada grafik berikut:
Grafik
1.0
.Poligon Frekuensi Tentang Nilai-nilai
Hasil Ulangan
Harian Bidang Studi Matematika Dari
Sejumlah 40
Orang Murid
Madrasah IbtidaiyaH
2. Contoh Cara Melukiskan Distribusi
Frekuensi Dalam Bentuk Grafik Poligon Data Kelompokan
Misalkan
data tentang nilai hasil EBTA dalm bidang studi Biologi dari 80 jumlah siswa
kelas III jurusn Fisika yang di sajikan pada tabel berikut:
Tabel 1.2.Perhitungan
nilai Tengah untuk masing-masing interval dari Data Tertera
Interval
|
f
|
Midpoint (x)
|
78-80
75-77
72-74
69-71
66-68
63-65
60-62
57-59
54-56
51-53
48-50
45-47
|
2
2
3
4
5
10
17
14
11
6
4
2
|
(78+80):2=79
(75+77):2=76
(72+74):2=73
(69+71):2=70
(66+68):2=67
(63+65):2=64
(60+62):2=61
(57+59):2=58
(54+56):2=55
(51+53):2=52
(48+50):2=49
(45+47):2=46
|
Total:
|
80=N
|
_
|
Data
di atas kita sajikan kembali dalam bentuk Poligon Frekuensi,maka langkah yang perlu
dilakukan adalah sebagai berikut:
a. Menyiapkan
sumbu horizontal atau abscis X.
b. Menyiapkan
sumbu vertikal atau ordonal Y.
c. Menetapakan
titik nol(perpotongan dari sumbu X dan Y.
d. Menetapkan
atau mencari nilai tengah (midpoint) masing-masing interval yang ada.
e. Menetapkan
Nilai-nilai tengah dari masing-masing interval pada absscis X.
f. Menempatkan
frekuensi dari masing-masing interval pada ordinal Y.
g. Membuat
garis pertolongan(koordinat).
h. Melukiskan
grafik poligonnya.
Adapun
Grafik Poligonnya adalah seperti pada Grafik berikut ini:
Grafik
1.1
Poligon Frekuensi Tentang Nilai Hasil
EBTA dalam Bidang Studi Biologi,yang Diikuti Oleh Sejumlah 80 Orang Siswa Kelas
III SMA Jurusan Fisika
2.5 Cara Melukiskan Distribusi Frekuensi Dalam
Bentuk Grafik Histogram(Histogram Frequency)
Seperti halnya grafik poligon,grafik
histogram juga dapat dibedakan menjadi dua macam,yaitu;(1) Grafik Histogram
Data Tunggal,(2) Grafik Histogram Data Kelompokan
1.Contoh cara
melukiskan grafik histogram data tunggal
Kita ambil data berupa nilai hasil ulangan
Matematika yang diikuti 40 siswa Madrasah Ibtidaiyah,jika dikehendaki data
tersebut disajikan dalam bentuk grafik histogram,maka langkah yang akan
ditempuh adalah sebagai berikut:
a. Mennyiapkan
sumbu horizontal atau abscis X.
b. Menyiapkan
sumbu vertikal atau ordinal Y.
c. Menetapkan
titik nol(perpotongan X dan Y.
d. Mmenetapkan
atau menghitung nilai nyata (True Value) tiap-tiap interval yang tertera.
e. Menetapkan
nilai nyata masing-masing skor(nilai) yangada pada abscis x.
f. Menempatkan
frekuensi tiap-tiap skor(nilai) yang ada pada ordinal Y.
g. Membuat
grafik pertolongan(koordinat).
h. Melukiskan
grafik histogram.
Tabel 1.3.
Perhitungan Nilai Nyata Untuk Masing-masing Skor(Nilai)
(X)
|
f
|
Nilai Nyata
|
10
9
8
7
6
5
4
3
|
2
3
5
5
10
7
5
3
|
9,50-10,50
8,50-9.50
7,50-8,50
6,50-7,50
5,50-6,50
4,50-5,50
3,50-4,50
2,50-3,50
|
Grafik
1.2
Histogram Frekuensi Tentang Nilai Harian
Bidang Studi Matematika dari Sejumlah 40 Orang Murid Madrasah Ibtidaiyah
2.
Contoh cara melukiskan Distribusi Frekuensi dalam bentuk Grafik Histogram Data Kelompokan
Kita dapat mengambil kembali data
nilai hasil EBTA dalam bidang studi Biologi,yang diikuti oleh 80 orang siswa
kelas III SMA Jurusan Fisika. Untuk melukiskan grafik histogramnya diperlukan
langkah kerja sebagai berikut:
a. Menyiapkan
sumbu horizontal atau abscis X.
b. Menyiapkan
sumbu vertikal atau ordinal Y
c. Menetapkan
titik nol(perpotongan sumbu X dengan Y.
d. Mencari
atau menetapkan nilai nyata dari masing-masing interval
e. Menempatkan
nilai nyata masing-masing interval,pada sumbu mendatar atau abscis X.
f. Menempatkan
frekuensi masing-masing interval,pada sumbu vertikal atau ordinal Y.
g. Membuat
garis pertolongan(koordinat).
h. Mellukiskan
grafik histogramn
Tabel
1.4
. Perhitungan nilai Masing-masing
Interval Untuk Data yang Tertera pada tabel
Interval
|
f
|
Nilai Nyata
|
78-80
75-70
72-74
69-71
66-68
63-65
60-62
57-59
54-56
51-53
48-50
45-47
|
2
2
3
4
5
10
17
14
11
6
4
2
|
77,50-80,50
74,50-77,50
71,50-74,50
68,50-71,50
65,50-68,50
62,50-65,50
59,50-62,50
56,50-59,50
53,50-56,50
50,50-53,50
47,50-50,50
44,50-47,50
|
Total
|
80=N
|
_
|
Grafik
1.3
Histogram Frekuensi Tentang Nilai Hasil
EBTA dalam Bidang Studi Biologi,yang diikuti Oleh Sejumlah 80 Orang Siswa Kelas
III SMA Jurusan Fisik
BAB
III
PENUTUP
3.1 Kesimpulan
Variabel,Frekuensi
serta Distribusi Grafik sangat dibutuhkan untuk melakukan penelitian. Didalam
dunia statistik kita mengenal distribusi frekuensi bermacam-macam. Diantaranya
adalah Distribusi frekuensi dalam bentuk grafik Poligon dan Distribusi
frekuensi dalam bentuk Histogram. Dan kita dapat menggunakan
Distribusi-distribusi frekuensi tersebut untuk melakukan penelitian dan
pengumpulan data.
DAFTAR PUSTAKA
Prof. Drs.,
Sudijono Anas (2009). Pengantar Statistik
Pendidikan. Jakarta: PT Raja Grafindo Persada
Amral Syamsu,M.,
Metode Statistik,jilid I dan
II,Bandung:Ganaco,1963
Amudi
Pasaribu,Dr.,Pengantar Statistik,Medan:Imballo,1965.
Tidak ada komentar:
Posting Komentar